In vitro and in vivo functional activity of Chlamydia MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance.

نویسندگان

  • Andrea J McCoy
  • Robin C Sandlin
  • Anthony T Maurelli
چکیده

Organisms of Chlamydia spp. are obligate intracellular, gram-negative bacteria with a dimorphic developmental cycle that takes place entirely within a membrane-bound vacuole termed an inclusion. The chlamydial anomaly refers to the fact that cell wall-active antibiotics inhibit Chlamydia growth and peptidoglycan (PG) synthesis genes are present in the genome, yet there is no biochemical evidence for synthesis of PG. In this work, we undertook a genetics-based approach to reevaluate the chlamydial anomaly by characterizing MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase that catalyzes the first committed step of PG synthesis. The murA gene from Chlamydia trachomatis serovar L2 was cloned and placed under the control of the arabinose-inducible, glucose-repressible ara promoter and transformed into Escherichia coli. After transduction of a lethal DeltamurA mutation into the strain, viability of the E. coli strain became dependent upon expression of the C. trachomatis murA. DNA sequence analysis of murA from C. trachomatis predicted a cysteine-to-aspartate change in a key residue within the active site of MurA. In E. coli, the same mutation has previously been shown to cause resistance to fosfomycin, a potent antibiotic that specifically targets MurA. In vitro activity of the chlamydial MurA was resistant to high levels of fosfomycin. Growth of C. trachomatis was also resistant to fosfomycin. Moreover, fosfomycin resistance was imparted to the E. coli strain expressing the chlamydial murA. Conversion of C. trachomatis elementary bodies to reticulate bodies and cell division are correlated with expression of murA mRNA. mRNA from murB, the second enzymatic reaction in the PG pathway, was also detected during C. trachomatis infection. Our findings, as well as work from other groups, suggest that a functional PG pathway exists in Chlamydia spp. We propose that chlamydial PG is essential for progression through the developmental cycle as well as for cell division. Elucidating the existence of PG in Chlamydia spp. is of significance for the development of novel antibiotics targeting the chlamydial cell wall.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning, Expression and Characterization of UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA) from Wolbachia Endosymbiont of Human Lymphatic Filarial Parasite Brugia malayi

Wolbachia, an endosymbiont of filarial nematode, is considered a promising target for treatment of lymphatic filariasis. Although functional characterization of the Wolbachia peptidoglycan assembly has not been fully explored, the Wolbachia genome provides evidence for coding all of the genes involved in lipid II biosynthesis, a part of peptidoglycan biosynthesis pathway. UDP-N-acetylglucosamin...

متن کامل

Development of a whole-cell assay for peptidoglycan biosynthesis inhibitors.

Osmotically stabilized Escherichia coli cells subjected to freezing and thawing were utilized as the source of enzymes for a peptidoglycan pathway assay that can be used to simultaneously test all targets of the committed steps of cell wall biosynthesis. The use of (14)C-labeled UDP-N-acetylglucosamine (UDP-GlcNAc) as a substrate allows the direct detection of cross-linked peptidoglycan formed....

متن کامل

Fosfomycin resistance in Escherichia coli in Japan.

Fosfomycin, [L-(cis)-1, 2-epoxypropyl phosphonic acid] (FOM), a broad spectrum antibiotic produced by some strains of Streptomyces species1), acts as a phosphoenolpyruvate analog and irreversibly inhibits phosphoenolpyruvate UDP-N-acetylglucosamine (UDPG1cNAc)-3-O-enolpyruvyl transferase, an enzyme which catalyzes the first step of peptidoglycan biosynthesis2). FOM enters susceptible bacteria b...

متن کامل

Identification of novel irreversible inhibitors of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) from Haemophilus influenzae.

Uridinediphospho-N-acetylglucosamine enolpyruvyl transferase (MurA, E.C. 2.5.1.7) is an essential bacterial enzyme that catalyzes the first step of the cell wall biosynthetic pathway, which involves the transfer of an enolpyruvyl group from phosphoenolpyruvate to uridinediphospho-Nacetylglucosamine. In this study, novel inhibitors of Haemophilus influenzae MurA (Hi MurA) were identified using h...

متن کامل

Cloning and sequencing of Escherichia coli murZ and purification of its product, a UDP-N-acetylglucosamine enolpyruvyl transferase.

The Escherichia coli gene murZ, encoding the enzyme UDP-N-acetylglucosamine enolpyruvyl transferase, has been cloned and sequenced. Identified by screening an E. coli genomic library for clones that conferred phosphomycin resistance, murZ encoded a 419-amino-acid polypeptide and was mapped to 69.3 min on the E. coli chromosome. MurZ protein was purified to near homogeneity and found to have the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 185 4  شماره 

صفحات  -

تاریخ انتشار 2003